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ABSTRACT

- One of the fundamental questions in nonlinear optimization is how

optimization problems behave when the functions defining them change (e.g., by

continuous deformation). Recently the study of epi-continuity has somewhat

unified the results in this area. Here we show how to localize the concept of

epi-continuity, and how to apply these localized ideas to ensure persistence

and stability of local optimizing sets. We also show how these conditions

follow from known properties of nonlinear programming proble..s.
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SIGNIFICANCE AND EXPLANATION

Many real-world problems in statistics, engineering, economics and other

areas require the solution of optimization problems. Often these problems

involve nonlinear functions, and when this is the case we can frequently find

only local solutions (i.e., we know that there is no better solution near the

solution point that we have found, but we are not sure what happens far

away). Also, these problems are often subject to small changes in the problem

data caused by, e.g., inaccurate information or problem evolution in time.

Once we have found a local solution, it is natural to ask whether there will

still be a local solution nearby if the problem data are slightly changed.

This paper develops an appropriate theoretical framework within which

this question can be analyzed, and it provides relatively simple and

verifiable conditions under which local solutions will persist in the sense

just described.
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LOCAL EPI-CONTINUITY AND LOCAL OPTIMIZATION

Stephen M. Robinson

1. Introduction.

The question of stability in optimization deals with what happens to an optimization

problem when the elements of the problem are in some way deformed. For example, if the

original problem had optimal solutions, one might ask whether the perturbed problem has

solutions (persistence) and, if so, whether they are in some sense close to those of the

original problem if the deformations are in some sense small (stability). In general the

answers to these questions are "no" and "no,* so people have tried to find conditions to

impose on the optimization problem so that the answers become "yes" and, frequently, so

that the solutions are somehow well behaved as functions of the perturbation parameters.

A comprehensive overview of much work in parametric optimization is given in the book by

Bank et al. (2].

Recent development of the theory of epi-convergence has unified many of the

approaches and results in stability analysis. A general survey of results in this area

may be found in E1], and a general introduction in (].

In this paper we show how to localize certain results found in the theory of epi-

convergence, and how to use these localized results to develop useful criteria for

persistence and stability of local minimizers. Moreover, we show that these criteria are

implied by assumptions commonly used in optimization, such as constraint qualifications

and second-order sufficient conditions. Thus, the results presented here can be applied

whenever these assumptions hold.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the U.S.
National Science Foundation under Grant No. MCS-8200632, Mod. 2, at the University of
Wisconsin-Madison. The first version of this paper was written at the International
Institute for Applied Systems Analysis, Laxenburg, Austria, during the author's visit
there in May and June of 1983.



The basic technique used in this paper is a generalization of the method used in [6,

Th. 3.1] to prove existence of solutions to smooth nonlinear programming problems whose

data are perturbed. The results given here, however, apply to much more general problems

in which no differentiability need be assumed.

The remainder of this paper is organized as follows: in Section 2 we develop the

local epi-continuity results that we shall need here, and in Section 3 we apply these to

study global solutions of perturbed minimization problems. of course, similar results can

be applied, mutatis mutandis, to maximization problems. Then in Section 4 we introduce

the local optimization problem whose solutions we want to study, and we employ the results

of Section 3 to develop criteria for persistence and stability of its local minimizers.

Finally, in Section 5 we show how commonly used assumptions about nonlinear optimization

problems imply the general criteria used in Section 4.
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2. Local epi-continutty.

The ideas of epi-continuity and epi-convergence of functions have recently been used

to unify and extend the study of variational problems; for further information and

references consult (1] or 18J. Here we develop a local version of epi-continuity and

establish some of its properties.

In order to deal with the presence of parameters in the functions we use, it will be

convenient to employ functions of the form f(p,x), where p is understood to be a

parameter in a topological space P, and for each p the function f(p,') is the object

of interest for minimization or other purposes. We shall deal with the behavior of

f(p,*) for p near some base value p0 . We can include the case of sequences in this

framework by taking P to be the standard one-point compactification of {0,1,2,...}

created by adjoining the point PO = 
1
, with a base of neighborhoods of - given by

Vn " {n,n+1,... U (-I for n = 0,1,2,...

In the situations we want to consider, the question of interest is to relate various

properties of f(p,*) to the corresponding properties of f(p0,.) as p converges to

P0 . To work with such problems we need an appropriate concept of convergence for

functions. Of course, ordinary pointwise convergence is available, but it is not

particularly convenient for the study of minimization problems. A more useful idea is

epi-convergence, which permits us to employ, in the definition of the limit of f(p,-)

at x0 , information not only about f(px 0 ) for p near P0 but also about f(p,x)

for x near x0o. For our purposes it is convenient to introduce epi-convergence by means

of two auxiliary functions associated with f; we define these next. For the moment we

allow x to take values in an arbitrary topological space X; in Section 3 we shall

specialize X to a portion of W
n
. we use N(x) o N(p) to denote the neighborhood

system of x or p. All functions used here will be extended-real-valued, taking values

in I = [-,-1 or sometimes in (-,+]. ' e effective domain of such a function

(abbreviated "dom") is simply the set of points at which the function does not take the

value 4. Also, for any function a : P * Y, we set

-3-



lim inf a= sup inf c(p)
P P0 UeN(p0 ) peU

and

lim sup CL : inf sup (p).
PP0 Ue(p 0 ) peU

DEFINITION 2.1: Let P and X be topological spaces and let f Px X I t. For

P.e P and x0 e X, the epi-limit inferior of f at x0 as p + P0  is

(E.f)(x0 ) sup lim inf inf f(p,x)
veN(x0 ) p+P0 xeV

and the epi-limit superior of f at x0 as p + P0 is

(E*f)(x 0 ) := sup lim sup inf f(p,x)
VeN(x0 ) P P0  xeV

For more discussion of these functions, see [8].

Evidently Ef & E f, but these two functions may not agree at any given x. The

set (possibly empty) of x where they do agree is called the domain of epi-continuity of

f(p,*), written VE(f), and on this set we define the epi-limit of f as p + Po to

be their common value:

Ef(x) = E~f(x) = E*f(x), for x e DE(f)

The names given to Ef and E f suggest using them to define a kind of

semicontinuity. We do this in the next definition.

DEFINITION 2.2: Let f, p0  and x0 be as in Definition 2.1. We say f is epi-

lower semicoi.tinuous (e-lsc) at x0 as p p0  if f(p0 ,x0 ) I E.f(x 0 ), and epi-upper

semicontinuous (e-usc) there if f(p0 ,xo) E f(x0 ), whereas f is epi-continuous at

x0  if it is both e-lsc and e-usc there.

If f is epi-continuous at a point x0 then clearly x0 e DE(f), but the converse

is false in general. However, a simple condition on f(p0,.) removes this difficulty.

We state this after the following proposition.
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PROPOSITION 2.3: Let f. p0 , and x0  be as in Definition 2.1. Then
*

lir sup f(p,x) a E f(x0 ) a lir inf f(p01 ,x) li Un tnf f(p,x) - Ef(x0 ). (2.1)
(p,x)+(P0 ,x0 ) x+x0  (px)+(P0 x0 

)

PROOF: Choose two members V1 and V2 of N(x0 ). As x0 e v1 r) V2 , we have for

any p e P

sup g(p,x) inf g(px)
xeV1  xeV2

and therefore

inf sup sup g(p,x) int sup inf g(p,x)
UempO) peu xev1  Ue Rp O ) peu xeu 2

Taking the infimum over V1 e N(x0 ) on the left and the supremum over V2 e N(x0 ) on the

right, we obtain the first inequality. For the second, note that for each U e N(p0 ) and

each V e N(x0 ) we have

U inf f(p,x) a inf f(P0,x)xeV xev

Hence

inf sup inf f(p,x) I inf f(p0 ,x)ueAPpo) peu xev xeV

and upon taking the supremum in V we get

Eef(x0 ) sup 0inf f(p0 ,x) - lim inf f(p0 ,x)
vetx 0 ) xev xx

which proves the second inequality. The third is trivial, and the equality on the right

follows from

Ef(x0 ) = sup lil inf inf f(px)
vet4(x0 ) P+p0 xeV

. Ve(ip Uej? inf inf f(p,x) Itm inf f(p,x)

x )  pa ) .eu xev (p,x)-(po,Xo)

............................ i I lir -5-



COROLLARY 2.4: Let f, p0 , and x0 be as in Definition 2.1, and suppose f(p0,-)

is lsc at x0 . Then the set of points at which f is epi-continuous is precisely V,(f).

PROOF: If f is epi-continuous at some point, we already know that point is in

VE(f). Now suppose x0 belongs to DE(g)' so that E~f(x0 ) 
= 
E*f(x0 ). Then by (2.1)

this common value is lim inf f(p0,x). But by hypothesis this is f(p0 ,x0 ), and thus
x 0

f is epi-continuous at x0 . a

COROLLARY 2.5: Let f, p0 ' and x. be as in Definition 2.1. Then f is epi-lower

semicontinuous at x0  if and only if f is lower semicontinuous at (p0 ,x0 ).

PROOF: E.f(x 0 ) = lim inf f(p,x). U
(p,x) (P 0,x 0 )

COROLLARY 2.6: Let f and g be functions from P x X to (-O,+], and let

(p0 ,x0 ) e P x X. If f and g are epi-lower semicontinuous at x0, then so is f + g.

PROOF. f + g is well defined since neither function takes -. Now use Corollary

2.5 and the fact that addition preserves lower semicontinuity.

These results show that epi-lower semicontinuity behaves very simply under addition,

being nothing more than ordinary lower semicontinuity in disguise. This is not true of

epi-upper semicontinuity, though, since the first inequality in (2.1) may be strict.

However, the implication holds in one direction.

COROLLARY 2.7: Let f, p0, and x0  be as in Definition 2.1. If f is upper

semicontinuous at (p0 ,x0 ), then f is epi-upper semicontinuous at x0 .

PROOF: Use Proposition 2.3. a

This result differs from Corollary 2.5 in that its converse is not true (take

P = X 
= 
R with g(p,x) 

= 
I if x is irrational and 0 if x is rational). One

consequence of this discrepancy is that the sum of two epi-usc functions need not be epi-

usc. To see this, take g(p,x) to be as in the last sentence, with



0 if p 0 and x - 0

I if p 0 and x - 0
h(p,x)

I if x is rational but not zero

O if x is irrational .

If we choose any p and any V e NJ(0), we have inf h(p,x) = 01 hence
xeV

E h(0) - 0 - h(0,0), so h is epi-usc at 0. However, (g + h)(p,x) is 0 at (0,0)

and I everywhere else, so if p # 0 then for any V e N(0) one has inf g(p,x) - 1.
xeV

Thus E (g + h)(x 0 ) = 1, so g + h is not epi-usc at 0. Therefore the analogue of

Corollary 2.6 does not hold. However, by strengthening the hypothesis somewhat one can

obtain a condition for epi-usc of g + h, as we now show.

PROPOSITION 2.8: Suppose that g and h are functions from P x X to (- , J

and that (p0 ,x0 ) e P x X. Let h be epi-usc at x0 . If 9 is usc at (P0 ,x0 )

relative to dom h, then 9 + h is epi-usc at x0 .

PROOF: If (g + h)(p 0 ,x0 ) = +- then the result is true, so we can assume

(p 0 ,x 0 ) e doa 9 r) dor h. Choose c > 0; it suffices to prove

E (g + h)(x 0 ) A (g + h)(p 0 ,x0 ) + C.

Since g is usc at (p0 ,x0 ) relative to dom h, there exist U0 e N(p0 ) and

V0 e N(x 0 ) such that if (p,x) e (U0 x V0 ) r) do. h then g(p,x) < g(p 0 ,x 0 ) + E < 4-.

Also, we know that h(p 0 ,x 0 ) I E h(x0 ), so for each V e N(x 0 ) there is some U e N(p0 )

such that for each p e U there exists x e V with

h(p,x) < h(p 0 ,x 0 ) + £ E < 4+ - (2.2)

Now choose U e P(p 0 ) and V e N(x 0 ) with U.C U0 and V C V0 . If p e U, there

is some x e V satisfying (2.2), and the pair (p,x) then belongs to dom h.

Therefore (g + h)(p,x) < (g + h)(p 0 ,x0 ) + E, so

sup inf (g + h)(p,x) I (g + h)(p 0 ,x0 ) + E • (2.3)
peu xeV

Since taking sup-inf over V C V0  and U C U0  is equivalent to taking sup-inf over
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N(pO) x N(xo), we have from (2.3)

E (g + h)(x 0 ) 4 (g + h)(p 0 ,x0 ) + E a

Proposition 2.8 leads to an epi-continuity result for a certain type of function that

we shall use in the following sections. This function is constructed using a

multifunction (multivalued function), to model the situation one faces in dealing with

constrained optimization. If T is such a multifunction from P to X, we say it is

lower semicontinuous (lsc) at a pair (p0 ,x0 ) e P x x if x0 e T(p0 ) and, for each

V e N(x0 ) there is some U e N(p 0 ) such that for each p e U, V n T(p) o 0. If T is

isc at (p0 ,x0 ) for each x0 e T(p0 ), we say it is isc at p0 . For more information on

this latter tvoe of lower semicontinuity, see (8]; however, the idea of lower

semicontinuity at (p0 ,x0 ) will be more useful to us in what follows. This type of

semicontinuity seems to have been introduced by Dolecki [3].

The following lemma relates lower semicontinuity of T to an epi-semicontinuity

property of the graph of T, which is defined to be the set

r(T) := {(p,x) e P x Xix e T(p))

For a set S C P x X, we define the indicator function S of S to be

{ 0 if (p,x) e S

P(sP'X) : + if (px) * S
LEMMA 2.9: Let T be a multifunction from P to X, and let (pu,xO) e graph T.

Then r(T) is epi-usc at x0  if and only if T is Isc at (p0 ,x0 ).

PROOF (if): Suppose T is lsc at (p0 ,x0 ). Let V e N(x0 ), and find U0 e N(po)

so that if p e u0  then T(p) n V 30 . If p e u0 , then inf = 0, so

sup inf *r(T)(Px) = x
peu 0 xeV ()PX

and thus

inf sup inf
ueN(po) peU xeV r(T)(P'X)

As V was arbitrary in N(xo), this implies

0 = E 1 r(T)(x0) = '(T)(PoX )

so Wr(T) is epi-usc at x O.
-8-



(only if): Suppose *r(T) is epi-usc at x0 . Let V e N(x0 ). We have

0 -r(TlP0,x0) > E J (T)(x0)

so in particular

lir sup inf *r(T)(P'X) £ 0
P*P0  xeV

However, since r(T) takes only 0 and +1 this implies that for some U e N(p0 ) and

each p e U, inf (px) - 0. But this means that there is some x e V withxeV 4'r(T)(Px

x e T(p), so T(p) ) V is nonempty for each p e U: that is, T is lower

semicontinuous at (P0 ,x0 ). 0

The next proposition gives a criterion for epi-upper semicontinuity of a function

that models a constrained optimization problem. The function g(p,*) represents the

objective function, while T(p) represents the feasible set.

PROPOSITION 2.10: Let g : P x X + (-',+] and let T be a multifunction from P

to X. Define

fgip,x) if x e T(p)
f(p,x) :s

if x # T(p)

Assume that x0 e T(p0 ), that T is lc at (p0 ,x0 ), and that g is usc at (p0,X0)

relative to graph T. Then f is epi-usc at x0 .

PROOF: We have f = g + r(T)" As (p0 ,x0 ) e graph T, Lemma 2.9 implies that

"r(T) is epi-usc at x0 . However, dom *riT ) - graph T, and g is usc relative to

this set. The hypotheses of Proposition 2.8 are therefore satisfied, and we conclude

that f is epi-usc at x0 . •

In this section we have presented several general results about epi-semicontinuity.

These can, in turn, be used to derive other results about continuity properties of tinfima

of functions and of the sets of points at which those infima are achieved. Those results

are dealt with in Section 3.

-9-



3. Infima and minimizers of locally epi-continuous functions.

In this section we relate local epi-continuity properties of extended-real-valued

functions to the behavior of the infima of those functions and of the sets of points at

which those infima are attained. Throughout the section we work with a function

f : p x X + A, and we define two other quantities associated with f, its marginal

function 0(p) := inf f(p,x) (an extended-real-valued function) and its set of minimizers
xex

0(p) := {x e Xlf(x,p) f(p)}

(a multifunction from P to X). Note that if 0(p) = +- then 0(p) = Y, but this is

misleading since in actual modeling situations we do not want to consider points x for

which f(p,x) = +-. We shall therefore often avoid this situation by requiring that

f(p,*) be proper (never -- and not identically +-).

The results given here are analogues of Corollaries 3.35 and 3.44 of [8] that use

local hypotheses instead of the global hypotheses required in [8]. We shall see in

Section 5 that the local hypotheses, particularly in the case of epi-upper semicontinuity,

can be easier to verify than global ones.

Our first result deals with the behavior of 0 when an epi-upper semicontinuity

requirement holds.

PROPOSITION 3.1: Suppose that f is epi-usc at some x0 e X. Then

f(p0 ,X0 ) 4 lim sup 0(p)
P P0

PROOF: The epi-semicontinuity assumption implies that

f(p0 ,x0 ) g E f(x0 ) = sup lint sup inf f(p,x)
veN(x0 ) P P0 xev

k lim sup 0(p)

where we made the special choice V = X. U

Note that if in Proposition 3.1 we had taken x0 e 0(p0 ), then we would have found

that 0 was upper semicontinuous at p0 , since then 0(p0 ) 
= 

f(p0 ,x0 ).

-10-



We now develop a simple criterto "or the multifunction t to be closed at pO0

which means that *(p0) = n cI f(U), where O(U) means U 0(p). This propertyueN(p0 ) peu

is sometimes called upper semicontinuity, and further details about it may be found in (8]

or (4]. To establish this property we briefly consider an extended real valued function

g(p,x) on P x X and its associated level-set multifunction

Ag(p) := Ix E Xlg(p,x) < CL). We want to point out that A
g  

is closed at p0 e P if for

each x e X, g is Isc at (p0 ,x). To see this, note that we always have

Ag(p0 ) C n cl Ag(U). To prove the opposite inclusion, suppose
ueN(p0 )

x0 e no) cl Ag(U). Then for each U e N(p0 ) and each V e N(x0 ), there are p e U

ueN(p0  
a

and x e V with g(p,x) 4 a. But then a > lim inf g(p,x) a g(p0 ,x0 ), so
(P,x)+(p ,x0 )

x0 e A(p ) and thus A
g  

is closed at Po. This observation leads to the following

criterion for 0 to be closed.

PROPOSITION 3.2: Let f : P x X + ( -,+j- and assume that f(p0 ,.) is proper.

Suppose that for each x e X f is epi-lsc at x, and that for some x0 e 0(p 0 ) f is

epi-usc at x0 . Then f(p0 ) is finite, 0 is closed at P0' and f(p,*) is proper for

each p in some neighborhood U of p0 .

PROOF: The second part of the hypothesis, together with Proposition 3.1, implies

that 0 is usc at p0 ' and therefore the function g(p,x) :- f(p,x) - 0(p) is lsc at

(p0 ,x) for each x e X (via Corollary 2.5). Note that our assumption that f(p0 ,.) was

proper and that x0 e o(p0 ) implies that 0(p0 ) is finite. Therefore, by upper

semicontinuity of 0 we have 0(p) < +- for all p in some U e N(p0 ), and so for

such p f(p,') is not identically +. As f never takes - we see that f(p,.) is

proper for each p e U. In particular, this means that g(p,-) is well defined. Now we

just observe that 0 is the level-set multifunction Ag associated with g.
0

Propositions 3.1 and 3.2 involved upper semicontinuity of * at P0' but it will

also be convenient to have a criterion for lower semicontinuity there. This is developed

-11-



in the next proposition, which imposes a somewhat different requirement on f: there is

no need for epi-upper semicontinuity, but we need a locally uniform compactness condition

on the level sets.

PROPOSITION 3.3: Let f : P x X I. Suppose that there are a compact set K C X

and a neighborhood U e N(p0 ) such that A f0(U) C K, and suppose further that f is
_C"p0)

epi-lsc at each x e K. Then * is Isc at p0 .

PROOF: If (p0 ) = -- the result follows; thus we may assume *(p0 ) > -. Let

< 0(p0 ); if x e K then f(p0 ,x) I 0(p0 ) > 8, so by lower semicontinuity there are

V(x) e N(x) and U(x) e N(p0 ) such that if (pl,xl) e V(x) x U(x) then f(p',x') > 8.
5

As K is compact, there are xl,...,x s e K such that K C U V(xi). Let
i=1

U0 := U .rf 1(x)]. If p e U0 and x e X then either x 0 K (in which case

f(p,x) > 0(p0 ) > 0) or else there is some i with x e V(xi). As p e U(x1 ) we have

f(p,x) > in this case too. Thus f(p) > B for each p e U0, so 0 is lac at p0.

Propositions 3.1 through 3.3, as well as the results of [8), deal with global infima

and global minimizers. In the next section we show how to adapt them to the analysis of

local minimization.

-12-



4. Stability in local minimization.

In this section we develop a set of criteria for persistence and stability of local

minimizers, based on the results of Section 3. However, to apply those results to local

instead of global minimization we need to define in suitable generality the idea of a

local minimizer. In particular, to obtain the results that we want, we need somehow to

make sure that we look at enough minimizers near where we are working. This idea is made

precise in the following definition.

DEFINITION 4.1: Let f be an extended real valued function on X. A nonempty

subset M of 311 is a complete local minimizing set (CLM set) for f with respect to an

open set G D M, if the set of minimizers of f on cl G is M.

Note that in this definition the function f must take the same value at each point

of M, and that value must be strictly less than the value assumed by f at any point of

the boundary of G. If M happens to be a singleton, it is usually called a strict local

minimizer of g. Of course, the set of global minimizers of f is always a complete

local minimizing set (take G - X).

Our strategy in dealing with local minimization will be to consider a parametrized

function f : P x X I and to impose certain hypotheses upon f on a CLM set of

f(p 0 ,*). From these we shall then draw conclusions about local minimizers of f(p,*)

for p near p0 . It will be convenient to state the hypotheses in the language of epi-

continuity in Section 5 we shall show how to translate these hypotheses into other forms

convenient for dealing with optimization problems found in practice.

For some of our results in this section we shall need a local compactness condition

on X. Of course, an imediate example of a situation in which such a condition holds is

the case of optimization in Rn .

The next proposition essentially adapts the results of Propositions 3.1 and 3.2 to

the case of local minimization.

PROPOSITION 4.2: Let f be a function from P x X to (-,+ and let G be an

open set in X. Define for p e P, e(p) :- infxecl G f(p,x) and
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o(p) := ix e cl GIf(p,x) = 6(p)). Assume that 0(p0 ) is a CLM set with respect to G

(i.e., O(p0 ) C G), that f(p 0,.) is proper, and that f is epi-usc at some

x0 e o(p0 ) and epi-Isc at each x e cl G.

Then e(p0 ) is finite, 0 is usc at p0  0 is closed at p0  and there is some

U' e N(p0 ) such that for each p e U', the restriction of f(p,-) to cl G is proper.

PROOF: Let g := f + Pxcl G; this is well defined since neither function ever

takes - . Since 0(p 0 ) C G we have 0(p0 ) < +-, so g(p0,.) is proper. Note that

g is epi-usc at x0 , since f = g on P x cl G and (p0 ,x0 ) belongs to the interior

of that set. Since x0  is a global minimizer of g(p0 ,-) and e is the marginal

function of g, Proposition 3.1 tells us that e is usc at Po" Hence there is some

U e N(p0 ) such that for each p e u 0(p) < +-, and therefore 0(p) is the set of

global minimizers of g(p,°).

Next we show that g is epi-]sc at each x e X. This is surely true if x t cl G,

since then g(p',x') = +- for any pl e P and any x' near x. If x e cl G, then

since g a f we have by epi-lsc of f,

g(p0 ,x) - f(p0 ,x) lim inf f(px')
(p',x') (P0,X)

lim inf g(p',),

(pSx')+(PX)

so g is epi-lsc at x by Corollary 2.5.

Now applying Proposition 3.2 (on U x X), we conclude that 6(p.) is finite, 0 is

closed at po' and g(p,s) is proper for each p in some neighborhood U' of p0 .

However, if g(p,*) is proper then so is the restriction of f(p,.) to cl G, since the

two functions agree whenever the second is defined and since g(p,.) +- off cl G. a

Proposition 4.2 is relatively weak in that it does not, for example, assert the

existence of minimizers for p Y P(," Indeed, such an assertion would be false under the
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hypotheses assumed there. We shall therefore strengthen those hypotheses by assuming some

compactness conditions, and with the new hypotheses we shall be able to prove a much

stronger theorem.

We first point out that if X is locally compact and 0(p 0 ) is a compact CL4 set

with respect to some open set G', then it is possible to find an open set G with

O(p0 ) C G C G', such that cl G is compact. Thus in the statement of our next theorem

we can suppose with no loss of generality that cl G is compact. To see why this is so,

let us associate with each x e 0(p0J a compact neighborhood V(x) with int V C G'. As
5

G(p0 ) is compact, there is a finite set x,,...,x, with G :- U int V(xi ) D 0(p0 ).i- 1

Then cl G is compact, and G(p0 ) remains a CLM set with respect to G.

THEOREM 4.3: Assume the hypotheses of Proposition 4.2, and suppose in addition

that X is locally compact, that cl G and 0(p0) are compact, and that f is lsc on

PX cl G.

Then 0(p 0 ) Is finite, 8 is continuous at p0 , and E) is closed at p0 .

Further, there is some U" e N(po) such that for each p e u", f(p,-) restricted to cl

G is proper and e(p) is a nonempty, compact CLM set for f(p,*) with respect to G.

PROOF: We know from Proposition 4.2 that 8 (p0 ) is finite, 0 is usc at p0. U is

closed at pO and f(p,°) restricted to cl G is proper for each p in some

u' e N(p0 ). Thus we need to prove that 6 is lac at p0  and that the last assertion

about 0(p) is true.

To prove lower semicontinuity of 8 we observe that because of the way in which g

was defined we have A(0) (P) C cl G, and we saw in the proof of Proposition 4.2 that

g was epi-lsc everywhere on X. Therefore Proposition 3.3 applies, and we conclude that

e is lac at P0' hence actually continuous there.

For the last assertion, note that the set 0(p) is nonempty and compact for each

p e P since f(p,) is lec on cl G. To complete the proof we Show that for some

u" e N(p0 ) with U" C U' we have cl O(U") C G; then surely 0(p) is a CIA set with

respect to G for each p e u".
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The property claimed is certainly true if G - X. If G # X then G has a

boundary, and for each U e N(p 0 ) we let T(U) be the intersection of cl G(U) with the

boundary of G. The sets T(U) are closed subsets of the compact boundary of G. But

since 0 is closed at p0 we have O(p0 ) - n cl 0(U), which implies that the
ueN(p 0 )

intersection of the T(u) is the intersection of O(p0 ) with the boundary of G, and

this latter intersection is empty since O(p0 ) is a CLM set with respect to G. It

follows that there is a finite family Ul,...,U t  in N4(p0 ) with the property that

t t
f) T(U i ) = 0. If we define U" to be U' 0 ( n Ui), then T(U") = 0, so we havei= 1 i=

cl O(U") C G. a

In order to apply Theorem 4.3 to a specific problem, we really need to know only four

things:

1) O(p 0 ) is a compact CLM set with respect to G,

2) f(p 0 ,.) is proper,

3) f is epi-usc at some x0 e 0(p 0 ), and

4) f is lsc on P x cl G.

Properties (2) and (4) can be checked using information about the functions appearing in

the optimization problem being solved. Properties (1) and (3) are usually enforced by

making regularity assumptions about the "base case" represented by p0 . In the next

section we discuss how these properties can be obtained in a typical nonlinear programming

problem.
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5. How to verify the hypotheses of Theorem 4.3.

In this section we show how to apply Theorem 4.3 to a typical nonlinear programming

problem. Of course, there are many other types of problems to which the results of that

theorem can be applied, but this application will serve to illustrate how the hypotheses

of Theorem 4.3 can be verified in practice.

The problem we shall consider is

minimtzex e(p,x)

subject to g(px) £ 0 ,(5.1)

h(p,x) 0,

xeC ,

where C is a closed convex set in FP, Q is an open set in In, P is a topological

space and a, g, and h are continuous functions from P x Q into R, Ir, and Rq

respectively. We let (p 0 ,x 0 ) e P x 1 and we assume that for each p e P, g(p,.) and

h(p,.) are Fr6chet differentiable on Q. First derivatives of g(p,.) and h(p,.)

with respect to x will be denoted by qx(p, • ) and hx(p,.). We assume that the

functions gx and hx are continuous at (p0 ,xO).

Suppose now that (5.1) has a local minimizer at x0  when p - po. We are interested

in conditions, preferably verifiable, under which we can apply Theorem 4.3 to (5.1) to

gain information about local minimization in (5.1) when p varies near p0. In order to

develop such conditions, we first define an essential objective function

f : p x I (--,+] by{ e(p,x) if x e C o w, g(p,x) S 0 and h(p,x) - 0
f(p,x) :"(5.2)

+- otherwise (

We note that f is evidently lac on P x Qi, and f(p0 ,) is proper. Next we make two

key assumptions about (5.1). These are explained in detail in the next two paragraphs.

The first assumption we shall make is that the constraints of (5.1) are regular at

x0  for p - pO. This means that
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o gl~H PoXo)1 gxlPO,Xo)1F~
0 e int + (C - XO) + (5.3)Lh p0, 0 h (p0,x0 (0~

if C happens to be On then (5.2) is just the well known tangasarian-Fromovitz

constraint qualification. Various properties of regularity are treated in [51 and [7); in

particular, it is shown in [5, Th. 1] that if we define a multifunction T : P + ln by

T(p) := Ix e C r Qlg(p,x) S 0, h(p,x) - 01 ,

then the hypothesis of regularity (5.3) implies that T is lower semicontinuous at

(p0 ,x0 ). This, together with Proposition 2.11 above and the fact that e(p,x) is

continuous, permits us to conclude that the essential objective function f defined in

(5.2) is epi-usc at x0 .

Our next assumption is that the level set of f(p0 ,-) corresponding to f(p 0 ,x 0 ) is

compact and is contained in A2. Specifically, we assume that there is an open bounded

set U with cl U C Q, such that if x e (C fl R)\U with q(x,p0 ) < 0 and h(x,p0 ) = 0,

then e(x,p 0 ) > e(x0 ,p0 ): that is, any feasible point of (5.1) (with p = p0 ) that does

not belong to U gives a worse value of the objective function than does x0 . We also

assume that x0  is indeed a minimizer of f(p0 ,*) with respect to cl U: that is,

that U is a CLM set for f(p0,.).

One way of ensuring that this assumption holds is by assuming the existence of second

derivatives and invoking the generalized second-order sufficient condition introduced in

[6]. In that case we know from [6, Th. 2.2] that we can take U to be a suitably small

neighborhood of x0 , and that there will then exist some positive W with the property

that for each x in U that is feasible for (5.1) (with p p0 ), one has

e(p0 ,x) a e(p0 ,x0 ) + Olx - x0 12 (5.4)

However, there are also many less stringent hypotheses under which the assumptions of the

last paragraph hold. For example, if the function f(p0 ,
o ) is convex then we need only

assume that it has a compact level set corresponding to f(p0 ,x0 ), since the local

minimizer x0  will then necessarily be global and hence a CLM set U will exist.
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With the above assumptions, the function f will satisfy the hypotheses of Theorem

4.3. We can therefore conclude immediately from that theorem that for each p in some

neighborhood of p0  the nonlinear optimization problem (5.1) has a local minimizer in

U: in fact, the set of such local minimizers will be a nonempty, compact CLM set with

respect to U. (Of course, for a convex problem this will be the global minimizing

set.) Further, that set will be closed at p0  as a multifunction of p, and the locally

optimal objective value will be continuous at p0. Thus, in this case the verifi'ation of

the hypotheses of Theorem 4.3 involves two familiar tools of nonlinear programming: a

suitable constraint qualification and a compactness condition on the level sets of the

essential objective function. These conditions, moreover, have to be satisfied only by

the unperturbed problem with p = p0, and conclusions about the perturbed problem for all

small perturbations will immediately follow.
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